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We report on the experimental evidence of noise amplification in an erbium-doped fiber laser in the vicinity
of saddle-node, period-doubling, and crisis bifurcations. We demonstrate this interesting phenomenon by
analyzing the laser bifurcation diagrams and power spectra. Numerical simulations on the base of an advanced
laser model display good agreement with the experimental results.
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I. INTRODUCTION

The interaction between stochasticity and nonlinearity is a
central current issue in the study of different dynamical sys-
tems including radiophysical �1�, climatic �2,3�, populational
�4�, geophysical �5�, epidemical �6�, and optical models �7�.
Several experimental and theoretical works have demon-
strated that this interaction sometimes plays a positive role in
multistable systems, e.g., inducing stochastic �8�, coherence
�9� and vibrational �10� resonances, preference of attractors
�11–14�, attractor hopping �15,16�, noise-enhanced multista-
bility �17,18�, etc. The idea that a system near the onset of a
dynamical instability might be very sensitive to coherent or
random perturbations originally came up in the Wiesenfeld
and McNamara �19,20� papers. They showed that time-
periodic dynamical systems can greatly amplify small-
amplitude perturbations in the vicinity of the simplest classes
of codimensional one bifurcations such as saddle-node, tran-
scritical, pitchfork, period doubling, and Hopf. Later, small-
signal amplification near the period-doubling bifurcation has
been observed experimentally in a loss-modulated CO2 laser
�21�.

Prebifurcation noise amplification has been extensively
studied theoretically, using both linear �19� and nonlinear
theories �22–25�. The linear theory displays an infinite
growth of perturbations, as the system approaches the bifur-
cation point �19�, whereas the nonlinear theories demonstrate
a saturation effect near the period-doubling �22–24� and
pitchfork �5,23� bifurcations; the real part of one of the nega-
tive Lyapunov exponents becomes positive when the system
approaches the bifurcation point �22�. According to the Wie-
senfeld’s �19� theory, the prebifurcation noise amplification
can serve as a noise precursor of the bifurcation in a nonlin-
ear system; the addition of white noise gives rise to new
broadband peaks not present in the noise-free system
�19,26�. These noise precursor peaks are centered at new
frequencies that appear only after the bifurcation. It is indeed
of great practical importance to know how far the system is
from a critical point. It is expected that strong changes in
noise amplification anticipate many oncoming natural and
biological catastrophes, such as tornado, earthquakes, con-
vulsion of nature, epidemics, population extinction, myocar-
dial infarction, etc., and thus can serve as an indicator of the
adverse natural phenomena and diseases. For example, the
sensitivity of the population to noise when close to a bifur-
cation has wide-ranging consequences for the evolution and

ecology of population dynamics �4�. Some recent studies in-
dicate an important role played by random atmospheric �such
as westerly wind bursts� in sustaining the weakly damped
southern oscillation, whose complementary warm and cold
phases are, respectively, El Niño and La Niña �2�. The dy-
namics of childhood diseases have provided influential space
studies to develop stochastic theoretical models with practi-
cal application to epidemiology. Childhood diseases are
known to fall into regions of parameter space of high noise
amplification �6�. Furthermore, multiple data on the main
homeostatic constants, such as the glycemia level, body tem-
perature, pH, etc., indicate that the fluctuation of these pa-
rameters during the day is an important diagnostic tool to
predict how a disease will end. A severe sepsis with a septic
shock is accompanied by an increase in the fluctuation range
of the glucose level in spite of unavailing therapeutic efforts
to maintain the homeostatic constant within its physiological
region �27�. A systematic experimental study of the influence
of noise on the dynamics of natural and biological systems is
hard to realize because it is extremely difficult or even im-
possible to control their parameters.

Previous experiments in which noise amplification near
bifurcation points was shown have not been directly devoted
to the investigation of that certain phenomenon. For ex-
ample, the noise rise effect near a bifurcation in experiments
with a driven nonlinear electrical resonator was observed by
Bocko and Battiato �28� in 1988 together with deamplifica-
tion input random noise under certain conditions in the non-
linear system. Another experiment of Lamela et al. �29� with
modulated diode lasers showed that noise can induce precur-
sors of a virtual Hopf phenomenon near period-doubling bi-
furcations. However, the phenomenon of noise amplification
in a nonlinear system close to the bifurcation points deserves
to be a subject of separate consideration in experimental
preparations.

Lasers have proved to be very useful tools for studying
many nonlinear dynamical phenomena because their param-
eters can be easily controlled to determine the laser dynam-
ics. It is well known that due to spontaneous emission of
radiation and noisy parameters, e.g., the pump parameter,
intrinsic noise is always present in any laser. In this work, we
show how intrinsic and additional white noise applied to the
diode pump current of an erbium-doped fiber laser �EDFL�
behaves in the proximity of different bifurcations such as
saddle-node, period doubling, and crisis points. In this paper,
we provide an experimental evidence of prebifurcation noise
amplification in a real physical system. We also develop an
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advanced EDFL model to better describe the laser behavior.
The paper is organized as follows. In Sec. II we describe

the experimental setup and study experimentally the phe-
nomenon of prebifurcation noise amplification in the vicinity
of the saddle-node, period-doubling, and crisis points. The
theoretical EDFL model and the results of numerical simula-
tions are presented in Sec. III. We also demonstrate the va-
lidity of our model by comparing its results on some impor-
tant laser characteristics, with those obtained experimentally.
Finally, the main conclusions are given in Sec. IV.

II. EXPERIMENT

Due to excellent optical properties of erbium-doped fibers
�high gain and single-mode operation�, EDFL is widely used
as a light source for optical communications, reflectometry,
sensing, medicine, etc. �30� On the other hand, EDFL is a
complex dynamical system, which serves as a paradigm for
studying many nonlinear dynamical phenomena such as bi-
furcations, chaos, frequency locking, and multistability
�31–37�.

A. Experimental setup

In this paper, we use a 1560-nm EDFL subject to har-
monic modulation of a 977-nm diode pump laser �Fig. 1�. A
3.51-m Fabry-Perot laser cavity is formed by an active
heavily doped 82-cm-long erbium fiber, a Faraday rotating
mirror �FRM�, and a fiber Bragg grating �FBG� with a
100-pm full width at half maximum �FWHM� bandwidth,
having, respectively, 100% and 91% reflectivities for the la-
ser wavelength. FRM is used to prevent the polarization
mode beating, which can result in additional complexity of
the laser system. The fiber laser output after passing through
a wavelength-division multiplexer �WDM� is recorded with a
photodetector and analyzed with an oscilloscope and a Fou-
rier spectrum analyzer. In our experiments, the diode current
is fixed at I=69 mA that results in the pump power P

=18 mW which corresponds to about a 30% excess over the
laser threshold Pth=14 mW. The harmonic signal
A sin�2�fmt� �A and fm being the amplitude and frequency of
external modulation, respectively� is obtained from a signal
generator, whereas the additive white noise n� �n and � being
the external noise amplitude and a randomly generated num-
ber, respectively� comes from a noise generator; both are
applied simultaneously to the diode pump driver current.

Without external modulation �A=0�, EDFL exhibits
small-amplitude oscillations �1%–2% of the magnitude of
the steady-state power� at the relaxation oscillation fre-
quency fr which depends on the pump power and noise as
shown in Fig. 2; the appearance of this frequency in the
spectrum is due to the diode pump-laser intrinsic noise �38�.
One can see that the additive noise slightly increases fr. In
our experiments, we choose the pump current so that the
laser relaxation oscillation frequency fr is about 30 kHz in
the absence of the external noise. In the same figure, we plot
also the numerically calculated dependence discussed in
more details in Sec. III B.

B. Experimental results

Figure 3 shows the experimental bifurcation diagram of
the peak-to-peak laser intensity with the modulation fre-
quency fm as a control parameter, for A=8 dB �units of the
noise generator� that corresponds to a 25% modulation depth
of the pump current in the absence of external noise �n=0�.
One can see the coexistence of different periodic and chaotic
attractors for certain modulation frequencies. We construct
this diagram changing the initial conditions either by switch-
ing on and off the signal generator or by increasing and
decreasing fm. As mentioned in some previous papers
�31–37�, since EDFL is a class-B laser, its dynamics is regu-
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FIG. 1. Experimental setup. FRM stands for Faraday rotating
mirror, FBG for fiber Bragg grating, and WDM for wavelength-
division multiplexer.
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FIG. 2. Experimental �solid lines� and numerical �dashed lines�
dependences of EDFL relaxation oscillation frequency on pump
power. The experimental curves are obtained with intrinsic laser
noise �open dots� and with 50%-modulation depth external noise
�filled dots�. The theoretical curves 1 and 1� are calculated taking
into account ASE and the curves 2 and 2� without ASE. The curves
1 and 2 are obtained in the presence of noise and the curves 1� and
2� without it. The calculated fr with ASE coincides with the experi-
mentally measured one �at �=1.3�.
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lated by the main laser resonance, which appears in the vi-
cinity of fr. The period-3 �P3�, period-4 �P4�, and period-5
�P5� attractors are born and dead in the saddle-node bifurca-
tions. The crisis and inverse period-doubling bifurcations are
also seen near fm�60 kHz and 68 kHz, respectively, in the
same manner that the P3 window within the chaotic region
�chaos� is found close to fm=55 kHz. In general, a laser
system modulated above its relaxation oscillation frequency
is not so sensitive to pump modulation as when it is modu-
lated below fr. Such behavior concerns not only laser sys-
tems but also other nonlinear oscillators.

In this work, we address the following question. How
does the laser system amplify intrinsic and additional exter-
nal noise while approaching the critical points? In order to
approach the problem, we measure the EDFL noise level in
the laser power spectrum. Examples of the power spectra in
the P3 regime for two different modulation frequencies are
shown in Fig. 4. Spectral noise density Nm at fm is found by
connecting the average noise levels below and above the
modulation frequency. One can see that the noise �ground�
level for fm=78 kHz is higher than that for fm=83 kHz, i.e.,
Nm2�Nm1. This fact indicates that the laser amplifies the

noise once fm approaches the saddle-node bifurcation which
occurs close to 78 kHz �see Fig. 3�. A similar behavior is
observed in the vicinity of other bifurcation points. Figure 5
shows Nm at the modulation frequency as a function of fm for
intrinsic laser noise �Fig. 5�a�� and for additive noise n
=200 mV ��20%� �Fig. 5�b��. In both cases, the prebifur-
cation noise amplification is evident near every critical point
�saddle node, period doubling, and crisis�. The closer the
system to the bifurcation point, the stronger the amplification
becomes. The effect is more pronounced at the correspond-
ing subharmonic frequencies for each attractor, i.e., at fm /3
for P3, at fm /4 for P4, and at fm /5 for P5. As the period-
doubling bifurcation is approached, the amplification is
greater for smaller noise, in good agreement with the previ-
ously observed small-signal amplification �20,21�. As seen
from Fig. 5, the noise amplification near the saddle node and
crisis bifurcations can reach 30 dB, i.e., the noise amplitude
is increased by three orders of magnitude while approaching
these critical points. We have not found a significant differ-
ence in the character of noise amplification near different
types of bifurcation. Near the saddle-node and crisis points,
noise increases exponentially until the attractor disappears;
whereas near the period-doubling bifurcation there is a maxi-
mum in the noise amplitude.

We should note that in our experiments, the diode pump-
laser noise level and its modulation amplitude were indepen-
dent of the modulation frequency because we dealt with the
frequencies ��100 kHz� much lower than the relaxation os-
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FIG. 3. �Color online� Experimental bifurcation diagram of
EDFL peak-to-peak intensity with modulation frequency as a con-
trol parameter. Different attractors are shown by different colors.

FIG. 4. Experimental EDFL power spectra for P3 regime at
external noise n=100 mV ��10%� for fm=83 kHz �solid line� and
78 kHz �dotted line�. The horizontal dashed lines show the noise
levels Nm1 and Nm2 at the modulation frequencies shown by the
vertical dashed lines.

FIG. 5. �Color online� Bifurcation diagrams of spectral noise
component versus modulation frequency demonstrating noise am-
plification near critical points for �a� intrinsic laser noise and �b�
n=200 mV. Various dynamical regimes are shown with different
colors.
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cillation frequency of the semiconductor laser ��1 GHz�.
Moreover, in the experiments on the noise amplification, the
pump power was fixed and the control parameter was the
modulation frequency. Thus, the noise amplification effect
observed was due to only nonlinear processes in the EDFL
itself but not in the pump laser.

III. THEORY

A. Model

A diode-pumped EDFL belongs to class-B lasers �39�
along with solid-state, semiconductor, and CO2 lasers. In this
type of lasers, the polarization relaxation is very fast and
therefore can be adiabatically eliminated, allowing the dy-
namics to be described by only two rate equations: one for
the laser field and the second for the population inversion.
The main ideas underlying the model equations for EDFL
have been developed in some of our previous work �see, for
instance, �34,35,37��. In the absence of external pump modu-
lation and noise, EDFL dynamics is ruled mainly by the fol-
lowing processes: �i� the resonant ground-state absorption
�GSA� saturation, �ii� the excited-state absorption �ESA� loss
�40� and cooperative �Auger� up conversion �41,42� �both
determined by the Er3+ ion energy levels’ structure�, and �iii�
the amplified spontaneous emission �ASE�—an essential fea-
ture of a fiber laser with a relatively long cavity. The periodic
and stochastic pump modulations are introduced into the
model as “external” disturbance factors which considerably
affect upon the EDFL dynamics �38�.

The balance equations for EDFL generation intracavity
power Pg �in s−1� and dimensionless population y of the up-
per laser level of Er3+ �4I13/2� are written as follows:

dPg

dt
=

2L0

Tr
�Pg���0��	 − 
�y − 1� − �I�

+ 2��0�	 − 1�y��ErK�y�exp�− L��� , �1�

dy

dt
= −

��0

N0Sa
Pg�	y − 1�

−
y

�0
	1 + 4�K��y� − 1�

��0
��	 − 1��0�Er

N0Sa

 −

y2

�1

+
1 − exp�− ��0L0�1 − y��

SpN0L0hp
Pp�1 + A sin�2�fmt� + n�� ,

�2�

where �0=N0�GSA and �0
��2�0 are the small-signal absorp-

tion coefficients of the active erbium-doped fiber core at the
generation wavelength �g=1.56 �m and near the Er3+ emis-
sion band maximum ����1.53 �m�, N0 is the Er3+ concen-
tration, 	=1+�e /�GSA and 
=�ESA /�GSA are the coeffi-
cients addressing the relations between the GSA, ESA, and
gain cross sections at �g ��GSA and �e being the cross sec-
tions of the GSA and gain transitions between the 4I15/2 and
4I13/2 states and �ESA is the effective ESA cross section in
Er3+�. �0 is the lifetime of single Er3+ ions in the excited
4I13/2 state; �1 is the effective relaxation time of the Er3+-Er3+

pair clusters, where each Er3+ ion forming a pair is in the
excited state; �=1−exp�−Sa /Sw� is the quantity accountable
for the generation wave/fiber core overlap factor �Sa=�a2

and Sw=�w0
2 /2 being, respectively, the geometrical cross

sections of the erbium-doped fiber core and the wave-guided
beam, where a and w0 are the core and beam radii�; T
=2n0L /c is the photon intracavity round-trip time, where L is
the total cavity length being the sum of the active fiber length
L0 and the total length l0 of all other intracavity fiber com-
ponents, n0=1.46 is the refractive index of silica, and c is the
velocity of light in vacuum; �l=�−ln�R1R2� /2L is the intra-
cavity overall losses, where � stands for the total nonreso-
nant intracavity loss, and R1 and R2 are the reflection coeffi-
cients of the FBG couplers forming the EDFL cavity; �Er is
the Er3+ emission bandwidth �assumed to be homogeneously
broadened�; � is the dimensionless coefficient accounting for
the ratio of absorption coefficient of erbium-doped fiber at
the pump wavelength �p to that ��0� at the generation wave-
length �g; �=�g /�Er is the factor addressing the ratio of
the generation and spontaneous emission bandwidths; hp is
the pump energy quanta;Sp is the pump radiation geometrical
cross section �it is assumed further that the pump radiation is
effectively absorbed within the active fiber core: Sp=�wp

2

�Sa� and Pp �in W� is the pump power at the active fiber
entrance.

The parameters responsible for the periodic and stochastic
external modulation are defined as follows. A and fm are the
amplitude and frequency of sinusoidal modulation, n is the
noise amplitude, and � is a random number �A ,n ,�� �0,1��.
The quantities K and K� are the length-averaged ASE coef-
ficients defined as

K =
exp�L0��0��	 − 
�y − 1�� − 1

L0��0��	 − 
�y − 1�
, �3�

K� =
exp�L0���0

���	� − 
��y − 1�� − 1

L0���0
���	� − 
��y − 1�

. �4�

In Eqs. �3� and �4�, the asterisks mean that a value is taken at
�� �for simplicity, we assume 	�=	, 
�=
, and ��=��. The
term 2��0�	−1�y��ErK�y�exp�−L�� in Eq. �1� character-
izes the role of ASE in establishing �seeding� emission in the
laser cavity, and the term 4�K��y�−1����0

��	
−1��0�Er� / �N0Sa� in Eq. �2� expresses its influence on how
the laser upper-level depopulation rate grows. The parameter
values either measured experimentally or provided by the
erbium fiber manufacturers are presented in Table I.

B. Numerical results

In order to check the validity of our model and ensure that
the chosen parameters �Table I� correspond to the real ex-
perimental arrangement, we calculate the dependences of re-
laxation oscillation frequency fr on pump power Pp without
external modulation �A=0� for four different cases �with and
without taking into account ASE and in the presence or ab-
sence of pump noise� and compare these results with the
experimental ones �Fig. 2�. This comparison allows one to
reveal the importance of the ASE contribution upon the
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EDFL characteristics. If ASE is considered when modeling
�see curves 1 and 1��, we get a good agreement between
numerically calculated and experimentally measured relax-
ation oscillation frequency �fr=30 kHz� for the same excess
of the pump power over the laser threshold ���1.3�. Notice
that the theoretical value obtained for the EDFL threshold
��14 mW� is very close to its experimental value �13.8
mW�. Meanwhile, when ASE is ignored in modeling �see
curves 2 and 2��, the model becomes very unsatisfactory. It is
also remarkable that the theoretical dependences fr�Pp� ob-
tained for a zero noise �n=0� and large noise �n=0.5� almost
repeat the experimentally measured ones �compare the theo-
retical curves 1 and 1� with the experimental ones�. Our
theory also predicts an increase of fr when noise is added, as
the experiments reveal. All the above results prove the model
validity and therefore ensure its applicability to modeling
EDFL dynamics at external pump modulation and noise bi-
ased.

Next, we present the temporal and spectral analyses of the
time series of intracavity laser power Pg�t� calculated using
Eqs. �1� and �2� for various amplitudes A and frequencies fm
of pump modulation and various noise levels n at a fixed
pump power level �i.e., fixed EDFL threshold�. Figure 6
shows the theoretical power spectra for two different modu-
lation frequencies, fm=83 and 78 kHz at fixed ��1.3 �Pp
�18 mW�, modulation depth �0.25�, and input noise ampli-
tude �0.25�, when the laser oscillates in the period-3 regime.
One can see that the noise levels �output noise� at fm and its
third subharmonic fm /3 are higher for fm=78 kHz than for
fm=83 kHz, i.e., the laser amplifies noise while approaching
the saddle-node bifurcation—the birth point for the P3

attractor—as it is exactly the case in experiments �compare
with Fig. 4�. In this paper, we are not showing the numeri-
cally calculated bifurcation diagram of the pump-modulated
EDFL intensity as a function of fm because it is very similar
to those previously published �32–34,37�; but we prove an
almost exact coincidence with the experimental bifurcation
diagram in Fig. 3.

Figure 7 shows the theoretical spectral noise density Nm at
the modulation frequency fm as a function of fm for the co-
existing attractors P1, P3, and P4. As in the experiment �see
Fig. 5�, we notice a significant noise amplification as the
laser is approaching the saddle-node bifurcation points. One
can observe a good agreement between the theoretical “noise
bifurcation diagram” �Fig. 7� and the measured one �Fig. 5�.
So, the developed EDFL model allows us to explain the in-
crement of “noisy” background of EDFL with external
modulation at approaching every bifurcation point �either
saddle node or period doubling� observed in the above ex-
periments.

IV. CONCLUSIONS

In this paper, we provided the experimental evidence of
prebifurcation noise amplification near different types of bi-
furcations in a diode-pumped EDFL. We found that noise
fluctuations were amplified not only in the vicinity of a
period-doubling bifurcation as was already shown in some
theoretical papers but also near saddle-node and crisis points.
We revealed that the closer to the bifurcation point the sys-
tem is, the stronger the noise amplification becomes. The

TABLE I. Parameters used in numerical simulations.

�g �p hp �0 N0 � �GSA 	 


1560 nm 977 nm 2.037�10−19 J 0.06 cm−1 2.4�1019 cm−3 0.7 2.48�10−21 cm−2 2.25 0.24

�0 �I �Er � w0 a � � L0 l0 R1 R2

100 ms 0.71 ms 25 nm 10−3 2.61 �m 1.35 �m 0.417 8.7�10−4 cm−1 0.82 m 3.51 m 1 0.91
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FIG. 6. Numerically calculated power spectra for modulation
frequencies fm=83 kHz �solid line� and 78 kHz �dotted line� of
EDFL working in P3 regime in the presence of external noise. A
=0.25 and n=0.25.

FIG. 7. �Color online� Calculated noise amplification for P1, P3,
and P4 regimes as a function of modulation frequency for the same
parameters as in Fig. 5.
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noise amplitude increased by three orders of magnitude,
while the system was approaching the saddle-node and crisis
points. Near the period-doubling bifurcation, the effect was
more pronounced for smaller-amplitude noise. The results of
numerical simulations using the developed EDFL model
demonstrated a fine agreement with the experiment. A com-
parison of the numerical and experimental results indicated
the importance of the ASE contribution in the EDFL dynam-
ics.

Many theoretical works have predicted generality of pre-
bifurcation noise amplification. Our studies demonstrated
with EDFL that this phenomenon can be expected near dif-

ferent critical points, and thus the results may have important
applications for prediction of crises and catastrophes in other
dynamical systems, e.g., in meteorology, geophysics, medi-
cine, stock market, etc.
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